ECE680: Physical VLSI Design

Chapter VI

Coping with Interconnect

Impact of Interconnect Parasitics

- Reduce Robustness
- Affect Performance
 - Increase delay
 - Increase power dissipation

Classes of Parasitics

INTERCONNECT

Capacitive Cross Talk

Capacitive Cross Talk Dynamic Node

 $3 \times 1 \mu m$ overlap: 0.19 V disturbance

Capacitive Cross Talk Driven Node

Keep time-constant smaller than rise time

Dealing with Capacitive Cross Talk

- Avoid floating nodes
- Protect sensitive nodes
- Make rise and fall times as large as possible
- Differential signaling
- Do not run wires together for a long distance
- Use shielding wires
- Use shielding layers

Cross Talk and Performance

- When neighboring lines switch in opposite direction of victim line, delay increases

DELAY DEPENDENT UPON ACTIVITY IN **NEIGHBORING WIRES**

Miller Effect

- Both terminals of capacitor are switched in opposite directions $(0 \rightarrow V_{dd}, V_{dd} \rightarrow 0)$
- Effective voltage is doubled and additional charge is needed (from Q=CV)

Impact of Cross Talk on Delay

bit <i>k</i> – 1	bit <i>k</i>	bit <i>k</i> + 1	Delay factor g
\uparrow	\uparrow	\uparrow	1
1	Ŷ	_	1 + <i>r</i>
↑	Ŷ	\downarrow	1 + 2r
—	\uparrow	—	1 + 2r
_	\uparrow	\downarrow	1 + 3r
\downarrow	Ŷ	\downarrow	1 + 4r

r is ratio between capacitance to GND and to neighbor

Structured Predictable Interconnect

V S G S V S

Example: Dense Wire Fabric ([Sunil Kathri])

Trade-off:

- Cross-coupling capacitance 40x lower, 2% delay variation
- Increase in area and overall capacitance Also: FPGAs, VPGAs

Interconnect Projections Low-k dielectrics

- Both *delay and power are reduced* by dropping interconnect capacitance
- Types of low-k materials include: inorganic (SiO₂), organic (Polyimides) and aerogels (ultra low-k)
- The numbers below are on the conservative side of the NRTS roadmap

Generation	0.25	0.18	0.13	0.1	0.07	0.05
	μm	μm	μm	μm	μm	μm
Dielectric	3.3	2.7	2.3	2.0	1.8	1.5
Constant						

Encoding Data Avoids Worst-Case Conditions

Driving Large Capacitances

$$t_p = \frac{C_L V_{swing}}{I_{av}}$$

- Transistor Sizing
- Cascaded Buffers

Using Cascaded Buffers

0.25 μm process Cin = 2.5 fF tp0 = 30 ps F = CL/Cin = 8000 fopt = 3.6 N = 7 tp = 0.76 ns

(See Chapter 5)

Output Driver Design

Trade off Performance for Area and Energy Given t_{pmax} find N and f

• Area

$$A_{driver} = \left(1 + f + f^{2} + \dots + f^{N-1}\right)A_{\min} = \frac{f^{N} - 1}{f - 1}A_{\min} = \frac{F - 1}{f - 1}A_{\min}$$

• Energy

$$E_{driver} = \left(1 + f + f^2 + \dots + f^{N-1}\right)C_iV_{DD}^2 = \frac{F-1}{f-1}C_iV_{DD}^2 \approx \frac{C_L}{f-1}V_{DD}^2$$

Delay as a Function of F and N

Output Driver Design

0.25 μ m process, C_L = 20 pF

Transistor Sizes for optimally-sized cascaded buffer $t_p = 0.76$ ns

Stage	1	2	3	4	5	6	7
$W_n(\mu m)$	0.375	1.35	4.86	17.5	63	226.8	816.5
$W_p (\mu m)$	0.71	2.56	9.2	33.1	119.2	429.3	1545.5

Transistor Sizes of redesigned cascaded buffer $t_p = 1.8$ ns

Stage	1	2	3
$W_n (\mu m)$	0.375	7.5	150
$W_p (\mu m)$	0.71	14.4	284

How to Design Large Transistors

small transistors in parallel

Reduces diffusion capacitance Reduces gate resistance

Bonding Pad Design

ESD Protection

- When a chip is connected to a board, there is unknown (potentially large) static voltage difference
- Equalizing potentials requires (large) charge flow through the pads
- Diodes sink this charge into the substrate need guard rings to pick it up.

ESD Protection

Chip Packaging

•Bond wires (~25µm) are used to connect the package to the chip

- Pads are arranged in a frame around the chip
- Pads are relatively large (~100µm in 0.25µm technology), with large pitch (100µm)
- Many chips areas are 'pad limited'

Pad Frame

Layout

Die Photo

Chip Packaging

- An alternative is 'flip-chip':
 - Pads are distributed around the chip
 - The soldering balls are placed on pads
 - The chip is 'flipped' onto the package
 - Can have many more pads

Tristate Buffers

Increased output drive

Out = In.En + Z.En

Reducing the swing

- $\hfill\square$ Reducing the swing potentially yields linear
- reduction in delay
- □ Also results in reduction in power dissipation
- Delay penalty is paid by the receiver
- □ Requires use of "sense amplifier" to restore signal level
- □ Frequently designed differentially (e.g. LVDS)

Single-Ended Static Driver and Receiver

driver

receiver

Dynamic Reduced Swing Network

INTERCONNECT

Impact of Resistance

- We have already learned how to drive RC interconnect
- Impact of resistance is commonly seen in power supply distribution:
 - IR drop
 - Voltage variations
- Power supply is distributed to minimize the IR drop and the change in current due to switching of gates

RI Introduced Noise

Power Dissipation Trends

Power Dissipation

- Power consumption is increasing
 - Better cooling technology needed
- Supply current is increasing faster!
- On-chip signal integrity will be a major issue
- Power and current distribution are critical
- Opportunities to slow power growth
 - Accelerate Vdd scaling
 - Low κ dielectrics & thinner (Cu) interconnect
 - SOI circuit innovations
 - <u>Clock system design</u>
 - micro-architecture

ASP DAC 2000

Resistance and the Power Distribution Problem

- Requires fast and accurate peak current prediction
- Heavily influenced by packaging technology

Power Distribution

- Low-level distribution is in Metal 1
- Power has to be 'strapped' in higher layers of metal.
- The spacing is set by IR drop, electromigration, inductive effects
- Always use multiple contacts on straps

Power and Ground Distribution

3 Metal Layer Approach (EV4)

<u>3rd "coarse and thick" metal layer added to the</u> <u>technology for EV4 design</u>

Power supplied from two sides of the die via 3rd metal layer 2nd metal layer used to form power grid 90% of 3rd metal layer used for power/clock routing

4 Metal Layers Approach (EV5)

4th "coarse and thick" metal layer added to the

technology for EV5 design

- Power supplied from four sides of the die
 - Grid strapping done all in coarse metal

90% of 3rd and 4th metals used for power/clock routing

6 Metal Layer Approach – EV6

2 reference plane metal layers added to the <u>technology for EV6 design</u> Solid planes dedicated to Vdd/Vss Significantly lowers resistance of grid Lowers on-chip inductance

Electromigration (1)

Limits dc-current to 1 mA/ $_{\mu}$ m

Electromigration (2)

Resistivity and Performance

Diffused signal propagation

Delay ~ L²

The Global Wire Problem

$$T_d = 0.377 R_w C_w + 0.693 (R_d C_{out} + R_d C_w + R_w)$$

Challenges

- No further improvements to be expected after the introduction of Copper (superconducting, optical?)
- Design solutions
 - Use of fat wires
 - Insert repeaters but might become prohibitive (power, area)
 - Efficient chip floorplanning
- Towards "communication-based" design
 - How to deal with latency?
 - Is synchronicity an absolute necessity?

Interconnect Projections: Copper

- Copper is planned in full sub-0.25 μm process flows and large-scale designs (IBM, Motorola, IEDM97)
- With cladding and other effects, Cu $\,^\sim$ 2.2 $\mu\Omega\text{-cm}$ vs. 3.5 for Al(Cu) \Rightarrow 40% reduction in resistance
- Electromigration improvement; 100X longer lifetime (IBM, IEDM97)
 - Electromigration is a limiting factor beyond 0.18 μ m if Al is used (HP, IEDM95)

Interconnect: # of Wiring Layers

of metal layers is steadily increasing due to:

- Increasing die size and device count: we need more wires and longer wires to connect everything
- Rising need for a hierarchical wiring network; local wires with high density and global wires with low RC

Minimum Spacing (Relative)

10/16/2008

Diagonal Wiring

destination

- 20+% Interconnect length reduction
- Clock speed
 Signal integrity
 Power integrity
- 15+% Smaller chips plus 30+% via reduction

Using Bypasses

Reducing RC-delay

$$M = L \sqrt{\frac{0.38rc}{t_{pbuf}}} \qquad \text{(chapter 5)}$$

Repeater Insertion (Revisited)

Taking the repeater loading into account

$$\begin{split} m_{opt} &= L_{\sqrt{\frac{0.38rc}{0.69R_dC_d(\gamma+1)}}} = \sqrt{\frac{t_{pwire(unbuffered)}}{t_{p1}}}\\ s_{opt} &= \sqrt{\frac{R_dc}{rC_d}} \end{split}$$

For a given technology and a given interconnect layer, there exists an optimal length of the wire segments between repeaters. The delay of these wire segments is independent of the routing layer!

$$L_{crit} = \frac{L}{m_{opt}} = \sqrt{\frac{t_{p1}}{0.38rc}} \qquad t_{p,\,crit} = \frac{t_{\dot{p},\,min}}{m_{opt}} = 2\left(1 + \sqrt{\frac{0.69}{0.38(1+\gamma)}}\right)t_{p1}$$

INTERCONNECT

L di/dt

Impact of inductance on supply voltages:

- Change in current induces a change in voltage
- Longer supply lines have larger L

L di/dt: Simulation

Dealing with Ldi/dt

- Separate power pins for I/O pads and chip core.
- Multiple power and ground pins.
- Careful selection of the positions of the power and ground pins on the package.
- Increase the rise and fall times of the off-chip signals to the maximum extent allowable.
- Schedule current-consuming transitions.
- Use advanced packaging technologies.
- Add decoupling capacitances on the board.
- Add decoupling capacitances on the chip.

Choosing the Right Pin

Decoupling Capacitors

Decoupling capacitors are added:

- on the board (right under the supply pins)
- on the chip (under the supply straps, near large buffers)

De-coupling Capacitor Ratios

- EV4
 - total effective switching capacitance = 12.5nF
 - 128nF of de-coupling capacitance
 - de-coupling/switching capacitance ~ 10x
- EV5
 - 13.9nF of switching capacitance
 - 160nF of de-coupling capacitance
- EV6
 - 34nF of effective switching capacitance
 - 320nF of de-coupling capacitance -- not enough!

EV6 De-coupling Capacitance

Design for Δ Idd= 25 A @ Vdd = 2.2 V, f = 600 MHz

- 0.32- μF of on-chip de-coupling capacitance was added
 - Under major busses and around major gridded clock drivers
 - Occupies 15-20% of die area
- 1-μF 2-cm² Wirebond Attached Chip Capacitor (WACC) significantly increases "Near-Chip" de-coupling
 - 160 Vdd/Vss bondwire pairs on the WACC minimize inductance

EV6 WACC

389 Signal - 198 VDD/VSS Pins

The Transmission Line

$$\frac{\frac{\partial^2 v}{\partial x^2}}{\partial x^2} = rc\frac{\partial v}{\partial t} + lc\frac{\frac{\partial^2 v}{\partial t}}{\partial t^2}$$

The Wave Equation

Design Rules of Thumb

• Transmission line effects should be considered when the rise or fall time of the input signal (t_r, t_f) is smaller than the time-of-flight of the transmission line (t_{flight}) .

$t_r(t_f) << 2.5 t_{flight}$

- Transmission line effects should only be considered when the total resistance of the wire is limited: $R < 5 Z_0$
- The transmission line is considered lossless when the total resistance is substantially smaller than the characteristic impedance,

 $R < Z_0/2$

Should we be worried?

Transmission line effects cause overshooting and nonmonotonic behavior

Clock signals in 400 MHz IBM Microprocessor (measured using e-beam prober) [Restle98]

Matched Termination

Segmented Matched Line Driver

Parallel Termination— Transistors as Resistors

Output Driver with Varying Terminations

Revised design with matched driver impedance

The "Network-on-a-Chip"

CMOS Schmitt Trigger (2)

